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Abstract. Diffusing Acoustic Wave Spectroscopy (DAWS) is a powerful
technique in field fluctuation spectroscopy for investigating the dynamics
of strongly scattering media and studying mesoscopic wave phenomena.
The principles underlying DAWS are described and illustrated with mea-
surements of the particle velocity fluctuations in fluidized suspensions. Two
examples of the potential of DAWS for elucidating mesoscopic wave physics
are presented: understanding the phase statistics of temporally fluctuating
multiply scattered fields, and investigating the breakdown of the Siegert re-
lation for multiply scattered waves when correlations exist in the scattering
medium.

1. Introduction

The role that acoustic waves, and ultrasonic waves in particular, are playing
in understanding the rich diversity of wave phenomena in complex media
[3, 4, 5, 6] is becoming increasing appreciated. In large part, this role reflects
the fact that ultrasonic techniques measure the wave field directly, without
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the need for complicated interferometry, and are normally easier to perform
with pulses than with continuous waves (cw). The advantage of the first is
that it gives direct experimental access to the wave function and/or Green’s
function, while the second allows the dynamics of the wave fields to be ex-
plored, as well as the time-of-flight distribution or path-length dependence
of multiply scattered waves. Furthermore, scattering contrast is governed
by differences in both density and velocity, offering versatile control of the
scattering strength. Thus, experiments with acoustic and elastic waves can
make important contributions to both fundamental studies and practical
applications of wave scattering in complex media, and are complementary
to optical and microwave methods for investigating these phenomena.

This is the first of two papers that summarize recent progress in us-
ing ultrasonic waves to explore two different aspects of wave transport and
spectroscopy in strongly scattering media. In this paper we focus on ran-
dom systems in which the scatterers are moving, and describe a technique in
field fluctuation spectroscopy, called Diffusing Acoustic Wave Spectroscopy
(DAWS), that uses multiply scattered waves to measure their dynamics
[7, 8, 9, 10]. We review the application of this technique to investigating
the dynamics of particles in fluidized suspensions, where a detailed under-
standing of the complex particulate flows has remained elusive, despite the
fact that the dynamics are mediated by one of the simplest many-body in-
teractions, the hydrodynamic interactions between particles in a liquid. We
also show how DAWS provides an opportunity to study fundamental prop-
erties of multiply scattered waves through the measurement of phase and
amplitude fluctuations. In the second paper, we turn to ordered systems and
examine ultrasonic wave propagation and tunnelling in three-dimensional
phononic crystals, where the character of waves is strongly modified by the
existence of band gaps and anisotropy of the wave speeds.

The organization of this paper is as follows. In section 2, we present
measurements and theory of the pulsed DAWS field autocorrelation func-
tion, highlighting the dynamic quantities that can be measured in fluidized
suspensions of particles. Section 3 deals with measurements of the phase
and amplitude of multiply scattered waves, focusing on the phase statistics
of time-varying fields and what can be learned from the comparison of field
and intensity correlation functions. The paper ends with some concluding
remarks and prospects for future work.

2. The Pulsed DAWS Field Autocorrelation Function and Scat-
terer Dynamics

When the scatterers in a multiple scattering material move, the speckle
pattern fluctuates, reflecting the changes that occur in the interference of
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waves travelling different scattering paths through the sample. In Diffusing
Acoustic Wave Spectroscopy, these fluctuations of the multiply scattered
wave field ψ(T ) are measured in one (or more) speckle spots and analyzed to
provide a sensitive technique for probing the dynamics of the scatterers. The
most direct way of determining the movement of the scatterers is through
the autocorrelation function of the scattered acoustic field,

g1 (τ) =
∫

ψ (T ) ψ∗ (T + τ) dT∫ |ψ (T )|2dT
. (1)

The relationship between g1(τ) and the scatterers’ dynamics can be illus-
trated qualitatively by noting that g1(τ) decays to approximately 1/2 when
the total rms change in phase of the scattered field due to the scatterers’
motion is about a radian. Here we use T to denote the time scale on which
the fluctuations in the scattered field are measured, as distinct from the
propagation time t of acoustic waves in the sample (t � T ). To facilitate
the calculation of g1(τ) when the waves are multiply scattered, and hence
link the phase change directly to the dynamics of the scatterers, we model
the propagation of sound though the material using the diffusion approx-
imation. Thus, we take advantage of the simple physical picture of wave
transport in a multiple scattering medium as a random walk process along
paths characterized by a step length equal to the transport mean free path
l∗, which is related to the energy velocity ve and the diffusion coefficient
D by D = vel

∗/3. In this paper we will illustrate the technique by review-
ing the application of DAWS to investigating the motion of particles in
a fluidized bed, where all the scatterers are moving in locally correlated
flow patterns that evolve rapidly in time. In this case, DAWS measures
the relative mean square displacement of the scattering particles that are
separated, on average, by a distance equal to the transport mean free path.
The method can obviously be generalized to many other scenarios, such as
those where only a fraction of the scatters may move or where the type of
motion or system dynamics is entirely different.

Pulsed DAWS, in which the incident signal is a short pulse or tone burst,
provides an important advantage over a cw (continuous wave) approach in
that it allows the field fluctuations to be measured for multiple scattering
paths of fixed length s = (n + 1)l∗, where n is the number of steps. If we
isolate one such path, the phase change resulting from the motion of all the
scatterers p along the path is

∆φ(n) (τ) =
n∑

p=0

∆φp (τ)
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=
n∑

p=0

[
�kp · (∆�rp+1 (τ) − ∆�rp (τ))

]

�
n−1∑
p=1

�kp · ∆�rrel,p (τ, l∗), (2)

where we have neglected (for the time being) the phase change due to
motion of the first and last scatterer relative to the source and detector,
as this is a small contribution for large n. Here �kp is the wave vector of
the wave scattered from the pth to the (p + 1)th particle, and ∆�rrel,p (τ) =
∆�rp+1 (τ) − ∆�rp (τ) is their relative displacement during the time interval
τ . By averaging over all paths with n steps, assuming that the successive
phase shifts ∆φp(τ) are uncorrelated, and using a cumulant expansion, the
pulsed field correlation function can be written in terms of the variance of
the phase change per scattering event p as

g1 (τ) =
〈
exp

[
−i∆φ(n) (τ)

]〉
� 〈

exp
[−i∆φp (τ)

]〉n
� exp

[− 〈∆φ2
p (τ)

〉
n/2

]
(3)

Hence g1(τ) can be written in terms of the relative mean square displace-
ment of the scatterers using Eq. (2), from which we obtain

〈
∆φ2

p (τ)
〉

=〈
(�kp · ∆�rrel,p)2

〉
=
〈
(kp ∆rrel,p (θp) cos θp)

2
〉
, where θp is the angle between

∆�rrel,p and �kp. In particular, when there are no correlations between the di-
rections of ∆�rrel,p and �kp, the phase change can be written as

〈
∆φ2

p (τ)
〉

=
k2
〈
∆r2

rel

〉
/3. Thus, the autocorrelation function takes on the simple form:

g1 (τ) ≈ exp
[
−nk2

6
〈
∆r2

rel (τ, l
∗)
〉]

. (4)

This equation shows clearly that the decay of g1(τ) is governed by the rela-
tive mean square displacement

〈
∆r2

rel (τ, l
∗)
〉

of particles that are separated
by the average step length l∗ of the diffusing sound’s random walk paths
through the sample.

For fluidized suspensions where the spatial correlations decay rapidly,
Eq. (4) is a very good approximation for g1(τ). However, for other types of
flows, it may be necessary to account for correlations in θp. For example, in
uniform shear flow,

〈
∆φ2

p (τ)
〉

= 0.6k2
〈
∆r2

rel

〉
/3, while in pure rotational

flow
〈
∆φ2

p (τ)
〉

= 0 [10]. In general, these correlations can be accounted for
formally by expressing g1(τ) in terms of the average local strain as

g1 (τ) ≈ exp
[
−nk2l∗2

6
ε̄2 (τ, l∗)

]
, (5)
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where

ε̄2 ≡ 2
5


〈(∑ εii

)2
〉

+ 2
∑
i,j

〈
ε2
ij

〉 , (6)

εi,j is the strain tensor

εij (τ) = 1
2

(
∂ui (τ)

∂rj
+

∂uj (τ)
∂ri

)
, (7)

and ui(τ) are the components of ∆�r(τ) [10, 11, 12]. For uncorrelated motion,
ε̄2 =

〈
∆r2

rel

〉
/l∗, and Eq. (5) reduces to Eq. (4) as expected.

To illustrate the application of pulsed DAWS to investigating the dy-
namics of particulate suspensions, experiments were performed on a flu-
idized bed containing 0.88-mm-diameter glass beads in a liquid mixture
of water and glycerol. By flowing the liquid vertically upward to counter-
balance gravitational sedimentation, stable suspensions could be achieved
over a wide range of particle volume fractions φ by varying the flow velocity
Vf . Even under quiescent conditions at low flow velocities, the fluctuations
in the particle velocities are remarkably large, and DAWS offers a novel
approach for addressing some of the outstanding scientific challenges in un-
derstanding their complex behaviour. As discussed elsewhere in more de-
tail [7, 13], some of the important questions that can be investigated using
DAWS include how the dynamics of the particles are influenced by volume
fraction, system size and Reynolds number, which measures the relative
importance of viscous and inertial effects in the hydrodynamic interactions
between the particles.

The majority of our experiments [10] to investigate these effects have
been performed by sending a train of short ultrasonic pulses, with a central
carrier frequency of typically 2 MHz, towards the sample and measuring the
scattered field at a particular transit time ts after each pulse has entered
the sample. The experiments described here were performed in transmission
mode, with the fluidized bed immersed in a large water tank, using a small
hydrophone to detect the scattered field within a single speckle spot on the
far side of the sample from the incident beam. In this pulsed realization of
DAWS, the pulse repetition frequency sets the rate at which the field fluctu-
ations are measured, and the sampling time ts sets the average path length
of diffusing sound in the sample and hence the number of scattering events
n since n ≈ s/l∗ − 1 ≈ s/l∗ = ve ts/l∗. From digitized records of temporal
field fluctuations at a particular value of n, acquired using a digital oscil-
loscope PC card, the field correlation function was calculated numerically
using fast Fourier transforms and the correlation theorem, which allows
the correlation function to be efficiently determined. An example of pulsed
DAWS field autocorrelation functions measured for different values of n is
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Figure 1. Field autocorrelation functions for several values of n in pulsed DAWS (left)
and corresponding values of the mean square relative displacements as a function of time
for particles in a fluidized bed (right).

shown in Fig. 1. As ts and hence n increases, the fluctuations become more
rapid due to accumulation of larger total phase changes along the longer
paths involved, and the correlation function decays more quickly. Making
use of independent measurements of the transport mean free path l∗, the
energy velocity ve and the wave vector k = ω/vp of diffusing acoustic waves
in the suspension [14, 15, 16, 17, 18, 10], Eq. (4) can be inverted to deter-
mine the relative mean square displacements of the particles, shown on the
right side of Fig. 1. Despite the large differences in the correlation functions
measured at the different sampling times, essentially identical values of the
relative mean free paths are found, indicating that the dependence on path
length in Eq. (4) correctly describes the data for this range of values of n. It
is also worth noting that measurements at large values of n (longer ts) give
better sensitivity to small displacements at early times (down to nearly a
micron, or ≈ λ/500 for these data), because of the more rapid decay of the
correlation function noted above. By contrast, smaller n (shorter ts) can be
used to increase the sensitivity to larger displacements of the particles, as
the correlation function can be measured for longer times before it reaches
the noise level; this is evident in Fig. 1 where it can be seen that the mea-
surements for n = 60 saturate at

〈
∆r2

rel(τ)
〉

< 0.01, while the maximum
measurable value of

〈
∆r2

rel(τ)
〉

for n = 26 is a factor of 3-4 times bigger.
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Figure 1 also shows that
〈
∆r2

rel(τ)
〉

varies quadratically with time, at
least for τ < 0.1 s, indicating that the particles follow ballistic trajectories
for short times. Eventually, these ballistic trajectories become altered by
interactions with neighbouring particles in the suspension, and the rate at
which

〈
∆r2

rel(τ)
〉

increases slows down. We represent this behaviour with
the empirical expression

〈∆r2
rel(τ)〉 =

〈∆V 2
rel〉τ2

1 + (τ/τcl)
2 (8)

where
〈
∆V 2

rel

〉
is the variance in the relative velocities of the particles

and τcl is the local crossover time, or the average time interval during
which the local relative motion of the particles is not impeded by inter-
particle“collisions”. The solid curve in Fig. 1 shows a fit of this expression
to the data, and gives an excellent description of the time dependence
over four orders of magnitude in

〈
∆r2

rel(τ)
〉

and more than two orders of
magnitude in τ . From this fit, an accurate measurement of the rms rela-
tive velocity fluctuations of the particles ∆Vrel =

√〈
∆V 2

rel

〉
is obtained,

as well as a good indication of the average change in particle separation
∆dsep = ∆Vrelτcl before interactions modify the particle trajectories.

The path length dependence of the measurements in pulsed DAWS is
examined in more detail in Fig. 2, where data at shorter path lengths are
also included. In order to correctly analyze data for short paths (small n), it
is necessary to consider the contributions to g1 due to the motion of the first
and last scatterer relative to the source and detector, respectively. As shown
by Cowan et al. [10], this can be accomplished by adding a correction term
to
〈
∆r2

rel(τ, l
∗)
〉

in Eq. (4) given by [〈∆r2
rel(τ, R)〉 − 〈∆r2

rel(τ, l
∗)〉]/n. Here

R is the linear distance between the first and last scatterer. This correction
term is zero if the motion of the scatterers is uncorrelated for R ≥ l∗, but its
magnitude is otherwise of order 1/n. For fluidized suspensions, where there
are significant local correlations in the velocities of the particles, this term
may not be negligible if the path length is short enough. The experimental
data indicated by the symbols in Fig. 2 show that this is indeed the case. In
this figure, we plot ∆Vrel determined from Eq. (4) without this correction,
divided by an extrapolation of ∆Vrel as n → ∞. For n < 20, this ratio
becomes significantly larger than unity, showing that appreciable errors in
the measurement of ∆Vrel will result if the correction is not taken into
account. Fig. 2 also compares a fit of the correction term to the data for
φ = 0.50, normalized in the same way, which is shown by the dashed curve.
In this fit, there is one unknown:

〈
∆V 2

rel (R)
〉

=
〈
∆r2

rel (R)
〉/

τ2. It is clear
from Fig. 2 that the correction term does indeed give a satisfactory fit to the
data; furthermore it yields a value of ∆Vrel(R) that is physically reasonable,
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Figure 2. Values of ∆Vrel as a function of the number of scattering events n determined
from Eq. (4), without accounting from the motion of the first and last scatterer with
respect to the source and detector. The data are normalized by the limiting values of
∆Vrel at large n, and compared with a fit to the correction term described in the text
(dashed curve).

lying between the minimum possible value at R = L, where L is the sample
thickness, and the maximum possible value at R = ξ, where ξ is the velocity
correlation length (see below). These results show that this correction term
can be used to make measurements for short paths and hence extend the
range of paths lengths over which data can be collected. They also show
that the simple expression for g1(τ) given by Eq. (4), neglecting the motion
of the first and last scatterers relative to the source and detector, accurately
accounts for the path length dependence in the correlation function for n
greater than about 20.

Most of our DAWS measurements have been performed using quasi-
plane wave input pulses generated in the far field of planar immersion
transducers. To improve signal to noise, a focusing transducer can be used
to focus the input pulse on the sample face, producing a quasi-point source.
The advantage of a point source is that there is more signal, since all of the
input energy is focused down on a small spot, instead of being spread out
in a quasi-plane wave. Since extensive signal averaging cannot be used to
measure time varying fields, other ways of optimizing signal to noise can
be especially important in DAWS. While in principle, the source geometry
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Figure 3. Comparison of DAWS experiments performed with a point source (open
symbols) and plane wave source (closed symbols).

should not matter, as what counts is only the the average length of the
scattering paths that are being measured, it is still important to check that
this holds in practice. Fig. 3 shows the results of such a test, where data
for 〈∆r2

rel(τ)〉 using a point source are compared with data obtained with
a planar source for three volume fractions φ of scatterers. The very good
agreement between the data taken with these two different input geome-
tries demonstrates that focussing transducers can indeed be used reliably
to increase the single-to-noise ratio in DAWS, and provides a useful check
of the robustness of the DAWS technique itself.

As emphasized above, DAWS measures the relative motion of the scat-
terers ∆Vrel(R) on a length scale determined by the transport mean free
path of the ultrasound, l∗. By changing the ultrasonic frequency, l∗ can be
varied, since the strength of the scattering is strongly frequency dependent
near the edge of the strong scattering regime where the wavelength becomes
comparable with the size of the scatterers [15, 16, 18]. Thus, the spatial cor-
relations in the particle velocities can be investigated over a range of length
scales, down to distances comparable with the average nearest neighbour
separation of the particles [7, 10]. In particular, the variance in the local
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relative velocity of the particles can be written

〈
∆V 2

rel (l
∗)
〉

=
〈
[∆�V (�r + l∗) − ∆�V (�r)]2

〉
= 2

〈
∆V 2

〉− 2
〈
∆�V (�r + l∗) · ∆�V (�r)

〉
= 2 V 2

rms (1 − exp [−l∗/ξ]) , (9)

showing explicitly how the relative velocity variance is related to the ab-
solute particle velocity variance V 2

rms and the velocity correlation function.
The last line of this equation assumes that the velocity correlations de-
crease exponentially as the distance between the particles increases, with a
characteristic decay length given be the velocity correlation length ξ. Since
Vrms can be measured using Dynamic Sound Scattering (DSS) in the sin-
gle scattering regime at low frequencies [7, 13], the instantaneous velocity
correlation length can be measured from the dependence of the relative
velocity fluctuations on l∗. Experimental data over a wide range of volume
fractions from 0.08 to 0.50 are shown in Fig. 4, where the relative veloc-
ity is normalized by the asymptotic value at large distances

√
2Vrms, and

the measurement length scale l∗ is normalized by the correlation length ξ.
Fig. 4 shows that for small inter-particle separations, the relative velocity
increases as the square root of distance, but levels off as the correlation
length is approached. The predictions of Eq. (9) are represented by the
solid curve and are in very good agreement with the data, confirming that
the velocity correlation function decreases exponentially with distance and
indicating the velocity correlation length of the particles can be reliably
measured using this technique.

We end this section with a couple of examples of typical data, taken as
part of an extensive investigation of the velocity fluctuations in fluidized
suspensions [13]. For these data, the particle Reynolds number Rep is 0.9,
a value at which we find very similar behaviour to that in creeping flow
conditions at much lower Rep, even though it is close to the range where
inertial effects are expected to become important. Fig. 5(a) shows the vol-
ume fraction dependence of the relative velocity fluctuations at a distance
given by the nearest neighbour particle separation, the shortest distance
in the suspension over which the local relative velocity can be defined. In
this figure, the velocity is normalized by the average fluid velocity Vf . Data
from three rectangular cells with different thicknesses Lz are included, the
other dimensions of the cells being larger and constant at 1030 and 407
bead radii a. The relative velocity is remarkably large even at these short
length scales, being similar in magnitude to Vf , and increases with volume
fraction φ as φ1/3 up to φ ∼ 0.4. At the highest φ, the relative velocity drops
as the particles move more in step with each other. Note that throughout
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Figure 4. Scaling plot showing the length scale dependence of ∆Vrel. Here ∆Vrel(l
∗)

is normalized by the value reached at large distances where the motion is uncorrelated
(
√

2Vrms), and the average separation between the particles at each measurement of
∆Vrel is normalized by the measured correlation length ξ. The solid curve represents the
predictions of Eq. (9), and the dashed line represents the

√
l∗/ξ dependence seen at short

length scales.

this range of volume fractions, the local relative velocity is unaffected by
the thickness of the cell, even when the shortest distance between the walls
is as small as 10 particle diameters. By contrast, the velocity correlation
length, shown in Fig. 5(b), shows a larger variation with volume fraction
and decreases significantly as the thickness of the cell is reduced. The vol-
ume fraction dependence is similar for the different cells, despite the fact
that the magnitude of the correlation length may be either substantially
larger or smaller than the smallest cell dimension. For φ � 0.2, the vol-
ume fraction dependence is consistent with φ−1/3 behaviour expected if
the number of particles in the correlation volume is independent of volume
fraction and is in agreement with the extrapolation of measurements us-
ing particle imaging velocimetry at low φ and Rep [19]. However, at higher
φ the correlation length increases quite rapidly, approximately linearly in
φ, indicating that the number of particles in the correlation volume grows
rapidly as φ4. The fact that the thickness of the cells influences the mag-
nitude of the correlation length indicates that cell walls play a major role
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Figure 5. (a) The root mean square relative velocity at the nearest-neighbour particle
separation, normalized by the fluid velocity Vf , as a function of volume fraction. Data

for three sample thicknesses are shown. The solid line shows the φ1/3 dependence that
is consistent with the data up to φ ∼ 0.4. (b) The volume fraction dependence of the
instantaneous velocity correlation length, normalized by the particle radius, for the same
three values of sample thickness. The data are consistent with a φ−1/3 dependence at low
φ and a linear dependence at high φ, as indicated by the solid, dotted and dashed lines
which represent fits to the data for the three thicknesses.

in determining the spatial extent of the velocity correlations, at least in
small cells. These data suggest the following simple physical picture: the
magnitude of the velocity fluctuations in fluidized suspensions may be set
initially at the local level by the relative motion of neighbouring particles
in the suspension, the relative motion then growing with the square root of
distance until the fluctuations are cut off at the correlation length by cell
walls or other screening effects [20, 21, 22]. However, the development of
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a microscopic model of the particle dynamics observed in our experiments
remains an intriguing theoretical challenge.

3. Phase and Amplitude Fluctuations of Multiply Scattered Waves

In addition to being a powerful technique for probing the dynamic be-
haviour of multiple scattering systems, DAWS provides an almost unique
opportunity to investigate fundamental properties of multiply scattered
waves. This opportunity arises naturally from the ability of ultrasonic tech-
niques to directly access the multiply scattered wave field, as opposed to
the scattered intensity, and the relative ease with which this can be ac-
complished compared to optical techniques . Thus, the temporal evolution
of both the phase and amplitude of the wave field can be measured inde-
pendently, and their statistical behaviour analyzed. Furthermore, using a
pulsed technique, this information can be obtained as a function of the path
length of the multiply scattering waves in the sample, potentially adding
additional insight into the nature of the wave fields. Here we address the fol-
lowing question: what can we learn using DAWS, both about wave physics
and the dynamic properties of complex media, from the amplitude and
phase fluctuations of multiply scattered ultrasonic waves?

The measurement of the phase and amplitude of the scattered field was
performed as follows (see Fig. 6). Again we use moving spherical glass
particles in a fluidized bed as an archetypical dynamic system to illustrate
the method. In order to maximize the rate at which the data could be
recorded, a short segment of the entire transmitted waveform (top panel of
Fig. 6) was recorded for each repetition of the input pulse, each segment
being about 4.5 periods long. The segments were centered around a fixed
sampling time ts = 18 µs after the input pulse arrived at the sample,
each time window corresponding to an average of 34 ± 2 scattering events.
Typical data for the scattered field segments, recorded at time intervals
separated by 150 repetitions of the input pulse (pulse repetition frequency
= 500 Hz), are shown in the left column of the bottom panel of Fig. 6. We
used a simple numerical technique to determine the phase and amplitude, in
which the digitized field data are first multiplied by a sine and cosine wave
at the central frequency of the pulse and then low-pass filtered to extract
the dc components S(t) and C(t); the amplitude and phase are then given
by A(t) = 2

√
S2(t) + C2(t) and ϕ(t) = tan−1[−S(t)/C(t)]. The frames in

the middle and right columns of the bottom panel illustrate snapshots of
the amplitude and wrapped phase [-π : π] for different positions of the
scatterers after they have moved during 0.75 s intervals. To measure the
amplitude and phase fluctuations with good statistical accuracy, 10 sets of
8300 consecutive pulses were recorded.
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Figure 6. Top panel: The input and transmitted pulses in a typical transmission DAWS
experiment. Two transmitted pulses, measured after a sufficiently long time interval that
the field has evolved considerably, are shown by the solid and dotted traces. Bottom
panel: Three snapshots of the scattered wave field, amplitude and phase (left, middle
and right columns) in a 1.5 µs long window after the scatterers have moved during time
intervals of τ = 0.75 s.

An example of the evolution of the measured amplitude and phase fluc-
tuations at three different sampling times is plotted in Fig. 7. The three
times correspond to times which are 0.15, 0.5, and 0.85 of the way across
the segment windows shown in Fig. 6. These sampling times are far enough
away from each other that the amplitudes and phases are not the same;
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Figure 7. Evolution of (a) the amplitude and (b) the wrapped phase at three different
sampling times, corresponding to times near the beginning, at the middle and near the
end of the segment windows shown in Fig. 6. The amplitude is expressed in arbitrary
units corresponding to the voltage measured on the digital oscilloscope.

however, they are still very strongly correlated. The amplitude gets ex-
tremely close to zero several times in the 7 seconds shown, which is typical
for this data set; on average this occurs about once every 2 seconds. The
variations for the same three sampling times are shown in Fig. 7(b). The
behavior of the wrapped phase at the three sampling times is very similar,
except for differences during the rapid variations of π in the phase that
occur in the dark speckles when the amplitude is close to zero.

The first-order statistics of the scattered intensity (I(T ) ∝ |A(T )|2)
and phase (ϕ(T )) are shown in Fig. 8. The probability density func-
tion for the intensity (Fig. 8(a)) shows the usual negative exponential
form characteristic of Rayleigh statistics of uncorrelated speckles, for which
P (I) = (1/Iave) exp(−I/Iave). The solid curve in Fig. 8(a) is a fit of this
distribution to the data, and confirms that the standard deviation is equal
to the mean, as expected [23]. Figure Fig. 8(b) shows that the correspond-
ing phase distribution function is flat between -π and +π, i.e. the phases
are distributed randomly with P (ϕ) = 1/(2π). Together, these results indi-
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Figure 8. Probability distributions of (a) the intensity and (b) the wrapped phase of
multiply scattered acoustic waves in fluidized suspensions.

cate that the multiply scattered wave field is a complex Gaussian random
variable, despite the correlations in the motion of the scatterers discussed
in the previous section.

3.1. PHASE INFORMATION: THE WRAPPED PHASE DIFFERENCE
PROBABILITY DISTRIBUTION

To gain more insight into the phase statistics of multiply scattered waves
and to see how information on the scatterer dynamics can be uncovered,
we examine the phase difference ∆ϕ(τ) = ϕ(T + τ) − ϕ(T ). Because of
the random character of the wave field, we are forced to take a statistical
approach. The statistics of the phase difference can be obtained from the
joint probability distribution P (ψT , ψT ′) of the fields at times T and T ′ =
T + τ . For a complex Gaussian process, P (ψT , ψT ′) can be written [23, 24]

P (ψT , ψT ′) =
1

π2 detC
exp


−

∑
i,j=T,T ′

ψ∗
i C

−1
ij ψj


 , (10)

where Cij = 〈ψiψ
∗
j 〉 is the covariance matrix. We normalize the fields so

that 〈ψiψ
∗
i 〉 = 〈|ψ(T )|2〉 = 1 and 〈ψiψ

∗
j 〉 = g1(τ), the field autocorrelation

function. Eq. (10) for P (ψT , ψT ′) can then be rewritten in terms of the
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amplitude and phase to give

P (AT , AT ′ , ϕT , ϕT ′) =
AT AT ′

π2
(
1 − g2

1

)
× exp

{
−A2

T + A2
T ′ − 2g1AT AT ′ cos (ϕT − ϕT ′)

1 − g2
1

}
.

(11)

The wrapped phase difference probability distribution can then be obtained
from Eq. (11) by integrating out the dependence on AT , A′

T and ϕ′
T at

constant ∆ϕ, giving

P (∆ϕ) =
2π − |∆ϕ|

4π2

[
1 − g2

1

1 − g2
1 cos2 (∆ϕ)

]

×
[
1 +

g1 cos (∆ϕ) arccos {−g1 cos (∆ϕ)}√
1 − g2

1 cos2 (∆ϕ)

]
. (12)

Eq. (12) shows that the wrapped phase difference probability distribution
contains information on the dynamics of the scatterers through its depen-
dence on g1(τ). At short times and small ∆ϕ, P (∆ϕ) can be written as a
simple algebraic law

P (∆ϕ) ∼=
1
2

〈
∆φ2 (τ)

〉
[〈∆φ2 (τ)〉 + ∆ϕ2]3/2

, (13)

whose width 〈∆φ2 (τ)〉 � n〈∆φ2
p (τ)〉 is the variance of the change in phase

for all paths containing n scattering events (c.f. Eq. (3)) and is related
to the relative motion of the scatterers through Eq. (4). This equation,
which is equivalent to the probability distribution for the phase derivative
with time P (dϕ/dτ), has the same form as the distribution for the phase
derivative with frequency investigated previously with microwaves [25, 24].
At long times, the phase difference probability distribution approaches a
triangular function

P (∆φ) =
2π − |∆φ|

4π2
, (14)

reflecting the complete lack of correlations in the phase difference as τ → ∞
and the underlying phase distribution is flat in [−π : π].

These theoretical predictions for the phase derivative probability distri-
bution are compared with experiment in Fig. 9, where our measurements
of P (∆ϕ) at two different times τ (representative of the behaviour at small
and large τ) are plotted along with fits of Eq. (12) to the data. At the
relatively short time of τ = 20 ms, the central part of the distribution
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Figure 9. The wrapped phase difference probability distribution for two different time
intervals τ . The solid symbols represent the experimental data, and the curves are the
single-parameter fits of Eq. (12).

shows the algebraic form predicted by Eq. (13), but rises again near ±2π
due to the effect of the 2π jumps in the phase due to phase wrapping. At
the longer time of τ = 1 s, the shape of P (∆ϕ) has changed completely
and is starting to approach the triangular function predicted by Eq. (14).
Thus, excellent agreement between theory and experiment is found over
many orders of magnitude in P (∆ϕ) and over the entire range of ∆ϕ from
−2π to 2π, providing a very convincing demonstration of the validity of
this theoretical model for the phase difference statistics.

Our theory for P (∆ϕ) also provides a framework for using phase fluc-
tuations of multiply scattered waves to measure the dynamics of complex
media, thereby showing how phase information can be used in a regime
where more traditional methods such as Doppler imaging break down. The
relative mean square displacement of the scattering particles determined
from fitting the full theory for P (∆ϕ) (Eq. (12)) to our phase data is plot-
ted as open symbols in Fig. 10 for a range of different times τ . In this figure,
the results from the phase measurements are also compared with data ob-
tained from the field correlation function, measured as described in section
2. Again excellent agreement is found, further confirming the validity of
our model for the phase difference probability distribution. Thus, we can
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Figure 10. The mean square relative displacement of particles in a fluidized suspension
measured from the width of the wrapped phase difference probability distribution (open
diamonds) and directly from the field autocorrelation function (solid squares).

conclude that this investigation of the phase statistics of multiply scattered
ultrasonic waves provides both a beautiful example of a novel mesoscopic
wave phenomenon and an alternative approach for measuring the dynamic
behaviour of multiply scattering systems.

3.2. AMPLITUDE INFORMATION: THE SIEGERT RELATION FOR
MULTIPLY SCATTERED WAVES

By measuring simultaneously the fluctuations in the scattered amplitude
and field, we are able to investigate the relationship between the intensity
and field autocorrelation functions, and hence probe the range of validity of
the Siegert relation for multiply scattered waves. The Siegert relation gives
a simple link between these two correlation functions, and is often used in
optics, especially for multiply scattered waves, to relate measurements of
the intensity correlation function to theory for g1 (e.g. see [26, 27, 28, 29]).
Since the scattered intensity I(T ) ∝ |A(T )|2, we can determine the intensity
correlation function G2(τ) directly from our measurements of amplitude
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fluctuations, where

G2(τ) =
〈I(T )I(T + τ)〉

〈I(T )〉2 = 1 + βg2(τ). (15)

Here β is the coherence factor, which is determined by the detector geom-
etry and is normally close to unity. For complex random Gaussian fields,
the correlation function g2(τ) is equal to the square of the field correlation
function g1(τ), as expressed by the Siegert relation:

g2(τ) = |g1(τ)|2 (16)

Since we have shown above that the scattered wave field can be represented
as a complex Gaussian random variable under the conditions for which the
phase measurements were performed, it would seem natural to assume that
this is always the case, and that the Siegert relation is generally obeyed for
multiply scattered waves. In this section we study this question critically by
examining the validity of the Siegert relation as a function of the path length
of multiply scattered waves in fluidized suspensions, where the motions of
the scatterers are at least locally correlated.

Pulsed DAWS measurements of the correlation functions g2(τ) and g1(τ)
are shown in Fig. 11 for the same fluidized suspensions (glass beads in a
water/gycerol mixture) used as examples of dynamic strongly scattering
media throughout this paper. To ensure very efficient data collection, the
amplitude of the scattered field was measured using a diode detector, and
the field and amplitude sampled at the same point ts in the scattered wave
form using two separate boxcars. (The gate width in the boxcars was set to
be much less than the wave period to enable the field to be accurately cap-
tured at a single point in the wave form.) Figure 11 shows that g2(τ) and
|g1(τ)|2 are indistinguishable for long paths. However, for n < 10, g2(τ)
is significantly larger than |g1(τ)|2 at all times τ , indicating clearly that
the Siegert relation breaks down for short paths in this system. We have
investigated this effect for different volume fractions of scatterers ranging
from 0.245 to 0.5, and find similar behaviour at all volume fractions. To
gain insight into this phenomenon, we compare the volume Ωξ over which
the particle motions are correlated with the volume ΩD probed by diffusing
acoustic waves for 10 scattering events. From our DAWS and DSS measure-
ments of the velocity correlation length ξ in the suspensions, we find that
the particle correlation volume Ωξ ranges from about 500 mm3 at φ = 0.245
to 5000 mm3 at φ = 0.5. By contrast, simple estimates of ΩD for n = 10
scattering events using the diffusion approximation are much smaller, rang-
ing form 130 mm3 at φ = 0.245 to 17 mm3 at φ = 0.5. Thus, the motion of
the particles in a path containing 10 steps is strongly correlated, leading to
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Figure 11. Comparison of the intensity (open symbols) and field (closed symbols)
autocorrelation functions measured using pulsed DAWS for different path lengths of
diffusing sound. The number of scattering events for each data set is shown in the insert.

the breakdown of the Siegert relation for short paths where the product of
four fields in the intensity correlation function is coupled due to the relative
motion. What is potentially of greater interest is the observation that for
n ≥ 10, even though the motion of the particles is still correlated in the
volume explored by the multiply scattered waves, 10 or more scatterings are
sufficient to overcome the effects of these correlations, thereby randomizing
the cumulative phases of multiply scattered waves along different scatter-
ing paths so that the Siegert relation becomes valid. This conclusion also
has important ramifications for continuous wave (cw) measurements, which
correspond to the usual experimental situation in optical experiments such
as DWS [26, 27, 28]. Since the average path length of cw waves in multiply
scattering media is generally sufficiently large that the contributions for
short paths containing fewer than 10 scattering events are negligible, the
Siegert relation is expected to be valid whether or not there are correla-
tions in systems’ dynamics. We have verified this result through additional
measurements of the field and intensity correlation functions for cw DAWS
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in the same fluidized suspensions.

3.3. CONCLUSIONS

Diffusing Acoustic Wave Spectroscopy (DAWS) is a powerful approach for
investigating the dynamics of strongly scattering media where direct imag-
ing fails. Because the wavelengths of seismic waves, sound and ultrasound
are very much larger that light, this technique and its many potential ex-
tensions are applicable to different classes of materials and systems than
those that can be studied with the optical technique of DWS. DAWS is
based on measurements of the scattered wave field, not intensity, so that it
is an example of field fluctuation spectroscopy. This has important conse-
quences not only for investigating the dynamics of complex media but also
for studying wave phenomena in the presence of strong multiple scattering.
Two examples of the latter have been presented in this paper: understand-
ing the phase statistics of temporally fluctuating multiply scattered fields,
and investigating the breakdown of the Siegert relation for multiply scat-
tered waves due to particle velocity correlations.

In this paper, the potential applications of DAWS have been illustrated
with experiments on fluidized suspensions of non-Brownian particles. In this
case, DAWS provides a very sensitive probe of the local relative velocity
of the particles as well as the correlations in the velocities over a wide
range of length and time scales. Recently a number of other applications
and analogous techniques have been or are being developed, including the
monitoring of fish in a reverberant aquarium [30], the sensitive measurement
of ultrasonic velocity changes with temperature [31] and the monitoring
seismic and laboratory-scale events in geophysics, where the relevance of
wave diffusion has recently been convincingly demonstrated[32] and field
fluctuation spectroscopy with multiply scattering acoustic waves has been
given the seismically relevant name of Coda Wave Interferometry [33]. Many
other applications in the nondestructive evaluation of complex media will
likely emerge in the future.
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